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Classical Projections of Quantum Mechanics
and the Limit h—20

Marcel Polakovigt

Received August 7, 2000

The convergence of the dynamics of classical projection to the dynamics of the classical
limitis investigated forh — 0. A mistake from a previous paper is pointed out, and the
correct version of the result is given. A new, similar result is presented if the function
generating the Hamiltonian of both the classical projection and the classical limit is a
polynomial.

1. INTRODUCTION

The Planck constant is a universal constant of nature. Itis very small, and from
the “classical” point of view, it can be considered to be very close to zero. An inter-
esting mathematical tool for understanding the formal connection between quan-
tum mechanics (QM) and classical mechanics (CM) is the limit 0. In some
sense, CM should be a limit of QM fdr — 0. Although this limit transition has
no rigorous physical meaning, as a mathematical tool it gives an interesting formal
relation between QM and CM.

Among the many papers concerning this topic are the classical work of Hepp
(1974), Yaffe (1982), Bha (1983), and Werner (1995). More reference of relevant
papers concerning this topic are given in Werner (1995).

One of the purposes of the present paper is to give a corrected version of
some results of the paper (Polakov1'998) where a mistake occurred in the proof
of Theorem 2. Fortunately, it was possible to correct this result by adding a new
assumption to the theorem. In the present paper, | give the correct version of
Theorems 2 and 3 of Polakav{1998). A new result is presented here. The ap-
proach given here is to take the limit transititn— O in the context of classical
projections. Classical projections of QM were investigated byd3(1986; see also
Bona, 2000). In the present approach, the Hamiltonians of classical projections
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converge to the Hamiltonian of the classical limit for> 0. The convergence
of dynamics in this context is also investigated. This approach is similar to that
proposed by Bha (1983).

In Section 2, some preliminary considerations are presented. In Section 3,
the correct version of the results of Polako(1998) is given. The results concern
the convergence of dynamics far— 0. More precisely, the dynamics of the
classical projection converges to the dynamics of the classical limit fer O,
and the Hamiltonian of the classical limit is from a specified class of bounded
functions. The convergence is uniform on compact intervals in time. In Section 4,
a similar new result is proved. Again the limit of dynamics of classical projections
is investigated foh — 0. Here the function determining the Hamiltonian of the
classical limitis a polynomial. The convergence of dynamics proved here is weaker
than uniform, but stronger than pointwise.

2. PRELIMINARIES

LetU be a unitary irreducible representation of the Weyl—Heisenberg group

in a separable Hilbert spaéé. The generatorXo, Xi, ..., Xz, can be chosen so
that the canonical commutation relations (CCR) are satisfied:
onhls X|=Q|9 Xi+n:P|: i:].,...,n.

Here Q; and P, are the coresponding operators of position and momentum
in QM. The representatiod can be considered as a projective representation of
the additive groufR?" and

Uy = exp(lﬁx - S. x)

whereX - S- x = X; Skxx andSis the standard symplectiaz< 2n matrix with
elementsSjk given by

Sj+n=—-S+wmj=1L j=1....n; Sx=0 otherwise
and
X:(Xl,...,XZn)=(Q, P)=(Q17"‘7Qn5 Plv"'9 Pﬂ)a

X=(Xg,...,%n)=(, pP)=(1,---,G, P1,---» Pn)-

We shall consider the Planck constamto converge to 0. For this purpose, let us
write A%h instead of h everywhere, wherg is a variable. Then the limih — 0
will be represented by — 0. For each value of > 0, we have

X = (X4, ., Xe) = (@4 PY) = (QL, ..., Q4 Pl ..., P

the set of operators of position and momentum, where we define
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Qi)LZ)\'Qi’ Pi)hz)\.R, |:1,,n
Then the operator®?, P* form an irreducible representation of CCRu#th is
considered the value of the “Planck constant.” The corresponding representation is

Uk = exp(ﬁx* 'S. x) - exp(%x 'S. %) = Uy

HereU; are the Weyl operators for the given value.oNow lety be a convenient
analytic vector of the representatibh Let us consider the orbit

0}, = {Uiy;x e R™"}.

It is a symplectic manifold parametrized by a paramererR>" and symplecto-
morphic toR?" with the standard symplectic form (see Bona, 1986, 2000).
For each value of > 0, we can consider a classical Hamiltonian(bf;):

hi(x) = (Ugy. H*Ugy)
whereH* is a version of the formally given quantum Hamiltonian
H* = h(X{, ..., X3,

Herehis a real function, which will play the role of the classical limit. The classical
system with Hamiltoniarh, (x) will be called a classical projection (see Bona,
1986, 2000). In Polakowi(1998), the functioh is denoted also by. In the present
paper, it will always be denoted by, and the letterf will be reserved for other
functions. In Polakowi’(1998),h; was constructed according to a prescription
proposed in Berezin and Shubin (1983). In Section 4 of the present paper, the
functionh will be a polynomial. In both cases, the following holds:

lim h, () = h(x).

This means that the Hamiltonian of the classical projection converges to the Hamil-
tonian of the classical limit for — 0. There arises a natural question: Does the
dynamics of the classical projection also converge to the dynamics of the classical
limit? More precisely, lek(0) = x, (0) be the same initial condition for the classi-
cal limit and the classical projection, with> 0 arbitrary. Letx(t) be the evolved
state of the classical limit at timg andx; (t) be the evolved state of the classical
projection at time. Does the time evolutior; (t) converge to(t) in some sense

for A — 07? In Section 3, the uniform convergence on compact intervals in time
(for corresponding choice of the functidm is proved. In Section 4, the function

h is a polynomial. A type of convergence that is perhaps weaker than uniform, but
stronger than pointwise is proved in Section 4.
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3. CORRECTION OF A PREVIOUS RESULT

In this section, we shall give the correct version of some results that were
published in Polakoei{1998). In Polakowi(1998),h was taken to be a function

h(g, p) = / %0 o(r, 5) d"r d"s
where

r:(rl,...,rn), S:(Sl’“.’s,])

ando(r, s) is the Fourier transform di. As a result, some conditions gnwere
found. The substitution o®?, P* into the functionh was given by

h(Q*, P*) = /expﬁ (rQ* +sP"] o(r,s)d"r d"s

as was suggested in Berezin and Shubin (1983). In Polek&998, Theorem 1)
the limit transition

lim h;.(x) = h(x)

was proved under some condition given on the funcgioifhe problem of con-
vergence of the dynamics was also treated in Polak{1998). Unfortunately,
there is a mistake in the proof of Theorem 2 of Polakdti998), but it is possible

to correct this result by adding one conditon to its assumptions. We obtain the
following.

Theorem 1. Let

oh oh .
R i=1...,2n
dX; »—0 90X
uniformly onR?". Let there exist positive constants, L= 1, ..., 2n, such that

Mey— My

<Lj|x—
a%; 0Xi = Lil vl

forall x, y € R?". Then the time evolution &) of systems with Hamiltoniar fx)
will uniformly converge for. — 0to the time evolution {t) of the system with the
Hamiltonian of the classical limit {x) on the compact intervaD, t,), where § is
an arbitrary finite positive time such that all the evolutions exist far{0, to) and
the initial conditions are x(0) = x(0) for all A that are sufficiently small.

We shall use the following well known result.

Lemma 1 (Gronwall's inequality), see Wiggins, 1990.Suppose the functions
u(s) and v(s) are continuous and non-negative on the interifgl t), and the
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function ¢s) is C! and non-negative on the intervép, t) with

t
o(t) < oft) + / u(s)u(s) ds;
to
Then

v(t) < c(to) exp(/tot u(s) ds) = /t: c(s) (exp/st u(r)dr) ds.

Proof of Theorem 1. Let f, f, : R® — R?" be given by
aoh oh oh oh
f(x) = (—(x),..., —(x), ——(x),...,——(x))

Ip1 9Pn 901 90

ah;, ah; ah;, ah;, )
LX) = —&), ..., —(X), ——(X), ..., ——(x
100 = (52000 G100~ 5~ 0

so that the Hamiltonian equations for solutiot{s), x; (t) can be written
x(t) = f(x®),  x(t) = fulxu(t).
We obtain
(1) = x(t) = H.(xu(t) — F(x(1)
= f(a(®) = F0a0)) + FO) — Fx(0).

By integrating from O tdp and considering absolute values, we obtain the following
estimate:

to
1% (to) — X(to)] < fo £.06.(0) — f(x(B)]dt

to
+ f 1 06(0) — Fx))dt.
0

Lete > 0 be arbitarily small. From the uniform convergence
ah;, ah
—_— % _—
0X%; X%
we see that there existg > 0 such that for O< A < Ao we have
1.0 — f(X) <

The conditions given for constants imply the existence of > 0 such that

() — f(WI = Lix—yl
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for all x, y € R?". Substituting these facts into the last estimate, we obtain

to
1% (t) — X(to)| < £(to — 0)+ L /O 1%, (t) — x(t)| di.

Now we can apply the Gronwall inequality far(s) = e(s — 0), u(s) = L,
v(s) = |x.(s) — X(s)|, and taking the corresponding interval of integration, we

obtain
to to
/ sexp(/ Ldr) ds
0 S

= St —1) < et
L =L

%, (to) — X(to)|

IA

As ¢ was arbitrarily small, the proof is complete. O

Now we can give a correct version of Theorem 3 in Pola&diti998). It
is again sufficient to add one condition on the functiorLet us denote (as in
Polokovic, 1998)

Vi =Ty, Yotrj =Sj, J=L1...,n

We obtain the following result.

Theorem 2. Let the Fourier transforny of the function h satisfy e L1(R?"),
Yip € LYR®), j =1,...,2n. Let there exist positive constantg,j =1,...,
2n, such that
dh oh
_(X) -

<Lix—
ox 8Xi(y) <Ljlx—yl

forall x, y € R?". Then the dynamics &) converges uniformly for — 0to x(t)
on the intervals(0, tp) for the initial conditions x(0) = x(0). In particular, this
condition is satisfied for arbitrary ke S(R?") (Schwartz space).

Remark. The added condition makes the set of acceptable functismaller.
In any event, the Schwartz space is contained in it.

4 POLYNOMIAL HAMILTONIANS
Let nowh be a polynomial in variables,, ..., Xo,. SO
H* = h(Xi, . Xgn)

is the quantum Hamiltonian for given> 0. Here we shall not discuss the condition
of symmetry ofH?; it would be satisfied by choosing the corresponding ordering
of the operator}, ..., X3, in this expression.
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Let us now compute the expressionfigfx) = h; (xu, ..., Xon). We shall use
the identity

(U)X = X+ %l

(For proof, see Polakowjto appear). Let us, for simplicity, considerto be a
monomial; for a polynomial we have analogous results. So let

h(x) = xi,Xi, . - . Xi,
i1,09,...,ike{1,2,...,2n}.
Now
h: () = (U, h(X1, - X50)Usc¥)
= (U, X{XE .o XUy
= (v. (U})~ xA Xt X Ury)
= (¥, (U}) " XEUL(U2) X, UL L (U)) TIXEULY)
= (v, (X} 4+ xi ) (X5 +%i,1) oo (XE 4+ %, 1))
= (¥, (Xiy 4+ Xi DX, 4+ X, 1) - (WX 4+ X D)
A simple computation gives
R (X) = X, Xi, - - - Xiy + AIAPL(X) + AgA2Pa(X) + - - - + AKPi(X)

where P, (x) are polynomials irxy, ..., xon of the k —i)th degree andy, i =
., k, are real constants. We see immediately thatsfan arbitrary polynomial
of degreek, then

hi(X) = h(X) + ALAPL(X) + Aoh®Pa(X) + - - - + Ak Pi(X)

where A, P, (x) are as above. From this expression, it can immediately be seen
that

lim h;(x) = h(x)
(see also Bona, 1986), so the Hamiltonian of the classical projection converges to

the Hamiltonian of the classical limit for — 0.
Now, if we form the Hamilton equations for the Hamiltoniafx), we obtain

=9(x) )

where

9(x) = (g"(x), g*(X), ..., g""(X))
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and g'(x) is a polynomial inxy, ..., X [a partial derivative ofh(x)]. For
Hamiltonianh, (x), we obtain the Hamilton equation in the form

X = g(x) 4+ Ag1(X) + 22g2(X) + - - - + 2¥gk(x) (2
where
g9i(¥) = (979 ... g"(x))

andgij (x) is a polynomial in variables,, . . ., X2, (it may be equal to 0).

Let now x(t) be the solution of (1) ana;(t) the solution of (2), where
x(0) = x,(0) for all relevant values of. We shall prove thak,(t) converges
to x(t) in some sense far — 0. For the proof, we shall need some basic facts
about ordinary differential equations. They will be taken from Gesjal. (1985).
As this book is not available in an English language version, we shall present here
the basic propositions from it as lemmas.

Let us take an ordinary differential equation

y= 1ty (3)

with initial condition

y(to) = Yo (4)

wherey e RP,t e R, and ¢, y) € O € RPL, whereO is an open set.

Definition 1 (see Gregs'et al, 1985). We say that the functioh: 0 — RP
satisfies the local Caratbdory conditions inO if, for each point {o, yo) € O
there exists a set

V(to, yo;a,b) = {(t,y) e R*™; |t —to] <a,ly—yo| <b} €O
wherea > 0, b > 0 such that for eachy( y1) € V (to, Yo; &, b):

(a) The functionf (t, y;) is measurable otty — a, to + a) as a function oft,

(b) The functionf (t;, y) is continuousiy € RP; |y — yo| < b}asafunction
ofy,

(c) There exists a non-negative functiorm e L({tp —a, tp + a))
(Lebesgue integrable) such thdt(t, y)| < m(t) for all (t, y) € V(to, Yo;
a, b).

Definition 2 (see Gregset al, 1985). The solutiory : | — RP of Eq. (3) is
said to be complete if and only if for each solutian J — RP of (3) and| <
J,z(t) =y(t)onl, hasz=y (soJ = |). The intervall is called the maximal
interval of the existence of the solution.
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Definition 3 (see Gregs'et al, 1985). LetO € RP* be open, t, yo) € O.
Equation (3) is said to have the property of uniquenestjry() if the following
holds: ify,, y, are solutions of (3) on the intervalsuch thaty; (to) = Y.(to) = Yo,
theny; = y, on J.

Lemma 2 (see Grega et al., 1985, Theorem 5.2). If the set O is open, then the
maximal interval of the existence of the solution is always open.

Lemma 3 (see Grega et al., 1985, Theorem 5.3). If the differential Eq. (3) has
the property of uniqueness in each point of the set O, then there exists exactly one
complete solution of (3), (4).

Let O € RP*! be a nonempty open set, the functibn O — RP satisfy the
local Caratleodory conditions irO and Eq. (3) have the property of uniqueness
in each point ofO. According to Lemmas 2 and 3, for eadh, f) € O, there
exists exactly one complete solution of (3) with initial condition (4) that is defined
on an open interval. This solution will be denotedydy; to, Yo) and its interval of
definition by @(to, Yo), b(to, Yo)). The following holds:

Lemma 4 (see Gregg et al., 1985, Lemma 6.1). Let ORP™! be a nonempty
open set, the function fO — RP satisfy the local Caratbodory conditions in
O, and Eqg. (3) have the property of uniqueness in each point of O.

Let the sequence of poinfk, y«) € O satisfylim_, - (t, Yk) = (to, Yo) €
O. Then for each compact intervét, d) C (a(to, Yo), b(to, Yo)) there exists k
such that for each k= ko, one has &y, yk) < ¢ < d < b(tk, y«) and the sequence
y(t; tk, Yk) uniformly converges to(y; to, o) on (c, d) for k — oo.

Definition 4 (see Gregsiet al, 1985, Definition 2.8). Letf : D — R", D C

R, We say that the functiorf = f(t, y) is Lipschitz in D if there exists a
constant. > 0 such that for two arbitrary points, (y) and ¢, y) in D the following

holds:

[ft.y)— f(t.y)l <Lly—yl.

Lemma 5 (see Gregh et al., 1985, Theorem 2.17). Let f be continuous and
Lipschitz on OC R™?, O open set(ty, yo) € O. Then Eq. (3) has the property
of uniqueness ifto, Yo).

Let us now apply the preceding basic results about differential equations to
Egs. (1) and (2). We can consider them as a single equation because (1) is in fact
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(2) where we set = 0. Equation (2) can be written
X = G(A, X)

where the components Gf(, x) are polynomials iy, ... ., Xon, A. If we add the
equation. = 0, we obtain the system of equations

X=G(, x), A=0
with initial conditions
X(to) = Xo, A(to) = Ao,

which is equivalent to the system (2)Jif= 1o and x(tg) = X are chosen. Let
A € (=1, 1). If we denote

y=(X2)= (X ..., Xan, A),
Yo = (Xo, X0).
we can write Eq. (2) (i = A¢) as
y=fty)=1f(y). Ylt)=Yo

where the components df(y) are polynomials iry, ..., Xon, A.
Let nowty = 0 and consider the solutiox(t) of (1) with initial condition
X(0) = Xo. Let the solution exist fot € (0, T + ¢), whereT > 0,¢ > 0. Let

M= max [x(t)],
te(0,T+e¢)

K = (—2M, 2M)?",

| =(-T —¢T+e).
Let us define the open set

O=1xKx(-11)

[whichmeans € |, x € K, A € (-1, 1)]. The functionf will be defined orO, f :
0O—- R?"*1, Clearly,O (the closure 0D) is compact. The functiofi is continuous
in O, so the local Caraddory conditions forf are satisfied irD. The equation

y="1(ty)

has the property of uniqueness@because it is continuous and LipschitzGn
accordingto Lemma5. The Lipschitz condition is satisfied because the components
of f are polynomials an® is compact.

So the conditions of Lemma 4 for the equatipe- f(t, y) are satisfied. Let
us putty = 0, Yo = (Xg, 0) (soro = 0), tx = 0, Yk = (Xo, Ak), where)»le—(;O. One
hash(to, Yo) > T + ¢, a(to, Yo) < OaccordingtoLemma2. Wecanmut0,d=T
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and from the statement of Lemma 4, we immediately obtain the main result of this
section:

Theorem 3. Let x(t) be the solution of (1), §0) = xo,t € (O, T + ¢), where
T > 0,¢ > 0. Let x,(t) be the solution of (2) for a given value of x; (0) = Xo.

Letix — Oifk — oo. Then there existglsuch that for each k- ko, the solution
X, (t) is defined o0, T) and the sequence Xt) uniformly converges to(x) on

(0, T) for k — oo.

Remark.This is actually the main result because Eq. (1) is the Hamilton
equation for the classical limit and Eq. (2) is the Hamilton equation of the classical
projection if there is given a polynomial Hamiltonian. So the time evolution of the
classical projection was shown to converge to the time evolution of the classical
limitin some sense for — 0. The shown convergence is weaker than the uniform
convergence on compact intervals in time, but it is clearly stronger than the simple
pointwise convergence. The question remians open of whether one can also prove
the uniform convergence on compact intervals in time.
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