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Classical Projections of Quantum Mechanics
and the Limit h→ 0

Marcel Polakovič1
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The convergence of the dynamics of classical projection to the dynamics of the classical
limit is investigated forh→ 0. A mistake from a previous paper is pointed out, and the
correct version of the result is given. A new, similar result is presented if the function
generating the Hamiltonian of both the classical projection and the classical limit is a
polynomial.

1. INTRODUCTION

The Planck constant is a universal constant of nature. It is very small, and from
the “classical” point of view, it can be considered to be very close to zero. An inter-
esting mathematical tool for understanding the formal connection between quan-
tum mechanics (QM) and classical mechanics (CM) is the limith→ 0. In some
sense, CM should be a limit of QM forh→ 0. Although this limit transition has
no rigorous physical meaning, as a mathematical tool it gives an interesting formal
relation between QM and CM.

Among the many papers concerning this topic are the classical work of Hepp
(1974), Yaffe (1982), B´ona (1983), and Werner (1995). More reference of relevant
papers concerning this topic are given in Werner (1995).

One of the purposes of the present paper is to give a corrected version of
some results of the paper (Polakoviˇc, 1998) where a mistake occurred in the proof
of Theorem 2. Fortunately, it was possible to correct this result by adding a new
assumption to the theorem. In the present paper, I give the correct version of
Theorems 2 and 3 of Polakoviˇc (1998). A new result is presented here. The ap-
proach given here is to take the limit transitionh→ 0 in the context of classical
projections. Classical projections of QM were investigated by B´ona (1986; see also
Bóna, 2000). In the present approach, the Hamiltonians of classical projections
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converge to the Hamiltonian of the classical limit forh→ 0. The convergence
of dynamics in this context is also investigated. This approach is similar to that
proposed by B´ona (1983).

In Section 2, some preliminary considerations are presented. In Section 3,
the correct version of the results of Polakoviˇc (1998) is given. The results concern
the convergence of dynamics forh→ 0. More precisely, the dynamics of the
classical projection converges to the dynamics of the classical limit forh→ 0,
and the Hamiltonian of the classical limit is from a specified class of bounded
functions. The convergence is uniform on compact intervals in time. In Section 4,
a similar new result is proved. Again the limit of dynamics of classical projections
is investigated forh→ 0. Here the function determining the Hamiltonian of the
classical limit is a polynomial. The convergence of dynamics proved here is weaker
than uniform, but stronger than pointwise.

2. PRELIMINARIES

Let U be a unitary irreducible representation of the Wey1–Heisenberg group
in a separable Hilbert spaceH. The generatorsX0, X1, . . . , X2n can be chosen so
that the canonical commutation relations (CCR) are satisfied:

X0 = hI, Xi = Qi , Xi+n = Pi , i = 1, . . . ,n.

Here Qi and Pi are the coresponding operators of position and momentum
in QM. The representationU can be considered as a projective representation of
the additive groupR2n and

Ux = exp

(
i

h
X · S · x

)
whereX · S · x = X j Sjk xk andS is the standard symplectic 2n× 2n matrix with
elementsSjk given by

Sj j+n = −Sj+nj = 1, j = 1, . . . ,n; Sjk = 0 otherwise

and

X = (X1, . . . , X2n) = (Q, P) = (Q1, . . . , Qn, P1, . . . , Pn),

x = (x1, . . . , x2n) = (q, p) = (q1, . . . ,qn, p1, . . . , pn).

We shall consider the Planck constanth to converge to 0. For this purpose, let us
write λ2h instead of h everywhere, whereλ is a variable. Then the limith→ 0
will be represented byλ→ 0. For each value ofλ > 0, we have

Xλ = (Xλ
1, . . . , Xλ

2n

) = (Qλ, Pλ
) = (Qλ

1, . . . , Qλ
n, Pλ

1 , . . . , Pλ
n

)
the set of operators of position and momentum, where we define
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Qλ
i = λQi , Pλ

i = λPi , i = 1, . . . ,n.

Then the operatorsQλ
i , Pλ

i form an irreducible representation of CCR ifλ2h is
considered the value of the “Planck constant.” The corresponding representation is

U λ
x = exp

(
i

λ2h
Xλ · S · x

)
= exp

(
i

h
X · S · x

λ

)
= Ux/λ.

HereU λ
x are the Weyl operators for the given value ofλ. Now letψ be a convenient

analytic vector of the representationU . Let us consider the orbit

Oλ
ψ =

{
Uλ

xψ ; x ∈ R2n
}
.

It is a symplectic manifold parametrized by a paramererx ∈ R2n and symplecto-
morphic toR2n with the standard symplectic form (see Bona, 1986, 2000).

For each value ofλ > 0, we can consider a classical Hamiltonian onOλ
ψ :

hλ(x) = (Uλ
xψ, HλUλ

xψ
)

whereHλ is a version of the formally given quantum Hamiltonian

Hλ = h
(
Xλ

1, . . . , Xλ
2n

)
.

Hereh is a real function, which will play the role of the classical limit. The classical
system with Hamiltonianhλ(x) will be called a classical projection (see Bona,
1986, 2000). In Polakoviˇc (1998), the functionh is denoted also byf . In the present
paper, it will always be denoted byh, and the letterf will be reserved for other
functions. In Polakoviˇc (1998),hλ was constructed according to a prescription
proposed in Berezin and Shubin (1983). In Section 4 of the present paper, the
functionh will be a polynomial. In both cases, the following holds:

lim
λ→0

hλ(x) = h(x).

This means that the Hamiltonian of the classical projection converges to the Hamil-
tonian of the classical limit forλ→ 0. There arises a natural question: Does the
dynamics of the classical projection also converge to the dynamics of the classical
limit? More precisely, letx(0)= xλ(0) be the same initial condition for the classi-
cal limit and the classical projection, withλ > 0 arbitrary. Letx(t) be the evolved
state of the classical limit at timet , andxλ(t) be the evolved state of the classical
projection at timet . Does the time evolutionxλ(t) converge tox(t) in some sense
for λ→ 0? In Section 3, the uniform convergence on compact intervals in time
(for corresponding choice of the functionh) is proved. In Section 4, the function
h is a polynomial. A type of convergence that is perhaps weaker than uniform, but
stronger than pointwise is proved in Section 4.
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3. CORRECTION OF A PREVIOUS RESULT

In this section, we shall give the correct version of some results that were
published in Polakoviˇc (1998). In Polakoviˇc (1998),h was taken to be a function

h(q, p) =
∫

ei (rq+sp) ϕ(r, s) dnr dns

where

r = (r1, . . . , rn), s= (s1, . . . , sn)

andϕ(r, s) is the Fourier transform ofh. As a result, some conditions onϕ were
found. The substitution ofQλ

i , Pλ
i into the functionh was given by

h(Qλ, Pλ) =
∫

exp[i (r Qλ + s Pλ)] ϕ(r, s) dnr dns

as was suggested in Berezin and Shubin (1983). In Polakoviˇc (1998, Theorem 1)
the limit transition

lim
λ→0

hλ(x) = h(x)

was proved under some condition given on the functionϕ. The problem of con-
vergence of the dynamics was also treated in Polakoviˇc (1998). Unfortunately,
there is a mistake in the proof of Theorem 2 of Polakoviˇc (1998), but it is possible
to correct this result by adding one conditon to its assumptions. We obtain the
following.

Theorem 1. Let
∂hλ
∂xi
−→
λ→0

∂h

∂xi
(i = 1, . . . ,2n)

uniformly onR2n. Let there exist positive constants Li , i = 1, . . . ,2n, such that∣∣∣∣ ∂h

∂xi
(x)− ∂h

∂xi
(y)

∣∣∣∣ ≤ Li |x − y|

for all x, y ∈ R2n. Then the time evolution xλ(t) of systems with Hamiltonian hλ(x)
will uniformly converge forλ→ 0 to the time evolution x(t) of the system with the
Hamiltonian of the classical limit h(x) on the compact interval〈0, to〉, where t0 is
an arbitrary finite positive time such that all the evolutions exist for t∈ 〈0, t0〉 and
the initial conditions are xλ(0)= x(0) for all λ that are sufficiently small.

We shall use the following well known result.

Lemma 1 (Gronwall’s inequality), see Wiggins, 1990.¤ Suppose the functions
u(s) and v(s) are continuous and non-negative on the interval〈t0, t〉, and the
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function c(s) is C1 and non-negative on the interval〈t0, t〉 with

v(t) ≤ c(t)+
∫ t

t0

u(s)v(s) ds;

Then

v(t) ≤ c(t0) exp

(∫ t

t0

u(s) ds

)
=
∫ t

t0

ċ(s)

(
exp

∫ t

s
u(τ ) dτ

)
ds.

Proof of Theorem 1. Let f, fλ : R2n→ R2n be given by

f (x) =
(
∂h

∂p1
(x), . . . ,

∂h

∂pn
(x), − ∂h

∂q1
(x), . . . ,− ∂h

∂qn
(x)

)

fλ(x) =
(
∂hλ
∂p1

(x), . . . ,
∂hλ
∂pn

(x), −∂hλ
∂q1

(x), . . . ,−∂hλ
∂qn

(x)

)
so that the Hamiltonian equations for solutionsx(t), xλ(t) can be written

ẋ(t) = f (x(t)), ẋλ(t) = fλ(xλ(t)).

We obtain

ẋλ(t)− ẋ(t) = fλ(xλ(t))− f (x(t))

= fλ(xλ(t))− f (xλ(t))+ f (xλ(t))− f (x(t)).

By integrating from 0 tot0 and considering absolute values, we obtain the following
estimate:

|xλ(t0)− x(t0)| ≤
∫ t0

0
| fλ(xλ(t))− f (xλ(t))| dt

+
∫ t0

0
| f (xλ(t))− f (x(t))| dt.

Let ε > 0 be arbitarily small. From the uniform convergence

∂hλ
∂xi
→ ∂h

∂xi

we see that there existsλ0 > 0 such that for 0< λ < λ0 we have

| fλ(x)− f (x)| < ε

The conditions given for constantsLi imply the existence ofL ≥ 0 such that

| f (x)− f (y)| ≤ L|x − y|
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for all x, y ∈ R2n. Substituting these facts into the last estimate, we obtain

|xλ(t0)− x(t0)| ≤ ε(t0− 0)+ L
∫ t0

0
|xλ(t)− x(t)| dt.

Now we can apply the Gronwall inequality forc(s) = ε(s− 0), u(s) = L ,
v(s) = |xλ(s)− x(s)|, and taking the corresponding interval of integration, we
obtain

|xλ(t0)− x(t0)| ≤
∫ t0

0
ε exp

(∫ t0

s
L dτ

)
ds

= ε

L
(eLt0 − 1)≤ ε

L
eLt0.

As ε was arbitrarily small, the proof is complete. ¤

Now we can give a correct version of Theorem 3 in Polakoviˇc (1998). It
is again sufficient to add one condition on the functionh. Let us denote (as in
Polokovič, 1998)

yi = r j , yn+ j = sj , j = 1, . . . ,n.

We obtain the following result.

Theorem 2. Let the Fourier transformϕ of the function h satisfyϕ ∈ L1(R2n),
yjϕ ∈ L1(R2n), j = 1, . . . ,2n. Let there exist positive constants Lj , j = 1, . . . ,
2n, such that ∣∣∣∣ ∂h

∂xj
(x)− ∂h

∂xj
(y)

∣∣∣∣ ≤ L j |x − y|

for all x, y ∈ R2n. Then the dynamics xλ(t) converges uniformly forλ→ 0 to x(t)
on the intervals〈0, t0〉 for the initial conditions xλ(0)= x(0). In particular, this
condition is satisfied for arbitrary h∈ S(R2n) (Schwartz space).

Remark. The added condition makes the set of acceptable functionsh smaller.
In any event, the Schwartz space is contained in it.

4 POLYNOMIAL HAMILTONIANS

Let nowh be a polynomial in variablesx1, . . . , x2n. So

Hλ = h
(
Xλ

1, . . . , Xλ
2n

)
is the quantum Hamiltonian for givenλ > 0. Here we shall not discuss the condition
of symmetry ofHλ; it would be satisfied by choosing the corresponding ordering
of the operatorsXλ

1, . . . , Xλ
2n in this expression.
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Let us now compute the expression forhλ(x) = hλ(x1, . . . , x2n). We shall use
the identity (

U λ
x

)−1
Xλ

i Uλ
x = Xλ

i + xi I .

(For proof, see Polakoviˇc, to appear). Let us, for simplicity, considerh to be a
monomial; for a polynomial we have analogous results. So let

h(x) = xi1xi2 . . . xik

i1, i2, . . . , i k ∈ {1, 2, . . . ,2n}.
Now

hλ(x) = (Uλ
xψ, h

(
Xλ

1, . . . , Xλ
2n

)
Uλ

xψ
)

= (Uλ
xψ, Xλ

i1 Xλ
i2 . . . X

λ
i kU

λ
xψ
)

= (ψ, (Uλ
x

)−1
Xλ

i1 Xλ
i2 . . . X

λ
i kU

λ
xψ
)

= (ψ, (Uλ
x

)−1
Xλ

i1U
λ
x

(
Uλ

x

)−1
Xi2U

λ
x . . .

(
Uλ

x

)−1
Xλ

i kU
λ
xψ
)

= (ψ, (Xλ
i1 + xi1 I

)(
Xλ

i2 + xi2 I
)
. . . ,

(
Xλ

i k + xik I
)
ψ
)

= (ψ, (λXi1 + xi1 I )(λXi2 + xi2 I ) . . . (λXik + xik I )ψ
)
.

A simple computation gives

hλ(x) = xi1xi2 . . . xik + A1λP1(x)+ A2λ
2P2(x)+ · · · + Akλ

k Pk(x)

where Pi (x) are polynomials inx1, . . . , x2n of the (k− i )th degree andAi , i =
1, . . . , k, are real constants. We see immediately that ifh is an arbitrary polynomial
of degreek, then

hλ(x) = h(x)+ A1λP1(x)+ A2λ
2P2(x)+ · · · + Akλ

k Pk(x)

whereAi , Pi (x) are as above. From this expression, it can immediately be seen
that

lim
λ→0

hλ(x) = h(x)

(see also Bona, 1986), so the Hamiltonian of the classical projection converges to
the Hamiltonian of the classical limit forλ→ 0.

Now, if we form the Hamilton equations for the Hamiltonianh(x), we obtain

ẋ = g(x) (1)

where

g(x) = (g1(x), g2(x), . . . , g2n(x))
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and gi (x) is a polynomial in x1, . . . , x2n [a partial derivative ofh(x)]. For
Hamiltonianhλ(x), we obtain the Hamilton equation in the form

ẋ = g(x)+ λg1(x)+ λ2g2(x)+ · · · + λkgk(x) (2)

where

gj (x) = (g1
j (x), . . . , g2n

j (x)
)

andgi
j (x) is a polynomial in variablesx1, . . . , x2n (it may be equal to 0).

Let now x(t) be the solution of (1) andxλ(t) the solution of (2), where
x(0)= xλ(0) for all relevant values ofλ. We shall prove thatxλ(t) converges
to x(t) in some sense forλ→ 0. For the proof, we shall need some basic facts
about ordinary differential equations. They will be taken from Greguˇset al. (1985).
As this book is not available in an English language version, we shall present here
the basic propositions from it as lemmas.

Let us take an ordinary differential equation

ẏ = f (t, y) (3)

with initial condition

y(t0) = y0 (4)

wherey ∈ Rp, t ∈ R, and (t, y) ∈ O ⊆ Rp+1, whereO is an open set.

Definition 1 (see Greguˇs et al., 1985). We say that the functionf : 0 → Rp

satisfies the local Carath´eodory conditions inO if, for each point (t0, y0) ∈ O
there exists a set

V(t0, y0; a, b) = {(t, y) ∈ Rp+1; |t − t0| ≤ a, |y− y0| ≤ b} ⊆ O

wherea > 0, b > 0 such that for each (t1, y1) ∈ V(t0, y0; a, b):

(a) The functionf (t, y1) is measurable on〈t0− a, t0+ a〉 as a function oft ,
(b) The functionf (t1, y) is continuous in{y ∈ Rp; |y− y0| ≤ b}as a function

of y,
(c) There exists a non-negative functionm ∈ L(〈t0− a, t0+ a〉)

(Lebesgue integrable) such that| f (t, y)| ≤ m(t) for all (t, y) ∈ V(t0, y0;
a, b).

Definition 2 (see Greguˇs et al., 1985). The solutiony : I → Rp of Eq. (3) is
said to be complete if and only if for each solutionz : J → Rp of (3) and I ⊆
J, z(t) = y(t) on I , hasz= y (so J = I ). The intervalI is called the maximal
interval of the existence of the solution.
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Definition 3 (see Greguˇs et al., 1985). LetO ⊆ Rp+1 be open, (t0, y0) ∈ O.
Equation (3) is said to have the property of uniqueness in (t0, y0) if the following
holds: if y1, y2 are solutions of (3) on the intervalJ such thaty1(t0) = y2(t0) = y0,
theny1 = y2 on J.

Lemma 2 (see Gregǔs et al., 1985, Theorem 5.2). If the set O is open, then the
maximal interval of the existence of the solution is always open.

Lemma 3 (see Gregǔs et al., 1985, Theorem 5.3). If the differential Eq. (3) has
the property of uniqueness in each point of the set O, then there exists exactly one
complete solution of (3), (4).

Let O ⊆ Rp+1 be a nonempty open set, the functionf : O→ Rp satisfy the
local Carath´eodory conditions inO and Eq. (3) have the property of uniqueness
in each point ofO. According to Lemmas 2 and 3, for each (t0, y0) ∈ O, there
exists exactly one complete solution of (3) with initial condition (4) that is defined
on an open interval. This solution will be denoted byy(t ; t0, y0) and its interval of
definition by (a(t0, y0), b(t0, y0)). The following holds:

Lemma 4 (see Gregǔs et al., 1985, Lemma 6.1). Let O⊆ Rp+1 be a nonempty
open set, the function f: O→ Rp satisfy the local Carath́eodory conditions in
O, and Eq. (3) have the property of uniqueness in each point of O.

Let the sequence of points(tk, yk) ∈ O satisfylimk→∞(tk, yk) = (t0, y0) ∈
O. Then for each compact interval〈c, d〉 ⊂ (a(t0, y0), b(t0, y0)) there exists k0
such that for each k≥ k0, one has a(tk, yk) < c < d < b(tk, yk) and the sequence
y(t ; tk, yk) uniformly converges to y(t ; t0, y0) on 〈c, d〉 for k→∞.

Definition 4 (see Greguˇs et al., 1985, Definition 2.8). Letf : D→ Rn, D ⊆
Rn+1. We say that the functionf = f (t, y) is Lipschitz in D if there exists a
constantL > 0 such that for two arbitrary points (t, y) and (t, ȳ) in D the following
holds:

| f (t, y)− f (t, y)| ≤ L|y− ȳ|.

Lemma 5 (see Gregǔs et al., 1985, Theorem 2.17). Let f be continuous and
Lipschitz on O⊆ Rn+1,O open set,(t0, y0) ∈ O. Then Eq. (3) has the property
of uniqueness in(t0, y0).

Let us now apply the preceding basic results about differential equations to
Eqs. (1) and (2). We can consider them as a single equation because (1) is in fact
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(2) where we setλ = 0. Equation (2) can be written

ẋ = G(λ, x)

where the components ofG(λ, x) are polynomials inx1, . . . , x2n, λ. If we add the
equationλ̇ = 0, we obtain the system of equations

ẋ = G(λ, x), λ̇ = 0

with initial conditions

x(t0) = x0, λ(t0) = λ0,

which is equivalent to the system (2) ifλ = λ0 and x(t0) = x0 are chosen. Let
λ ∈ (−1, 1). If we denote

y = (x, λ) = (x1, . . . , x2n, λ),

y0 = (x0, λ0),

we can write Eq. (2) (ifλ = λ0) as

ẏ = f (t, y) = f (y), y(t0) = y0

where the components off (y) are polynomials inx1, . . . , x2n, λ.
Let now t0 = 0 and consider the solutionx(t) of (1) with initial condition

x(0)= x0. Let the solution exist fort ∈ 〈0, T + ε〉, whereT > 0, ε > 0. Let

M = max
t∈〈0,T+ε〉

|x(t)|,

K = (−2M, 2M)2n,

I = (−T − ε, T + ε).
Let us define the open set

O = I × K × (−1, 1)

[which meanst ∈ I , x ∈ K , λ ∈ (−1, 1)]. The functionf will be defined onO, f :
O→ R2n+1. Clearly,Ō (the closure ofO) is compact. The functionf is continuous
in Ō, so the local Carath´eodory conditions forf are satisfied inO. The equation

ẏ = f (t, y)

has the property of uniqueness inO because it is continuous and Lipschitz inO
according to Lemma 5. The Lipschitz condition is satisfied because the components
of f are polynomials and̄O is compact.

So the conditions of Lemma 4 for the equationẏ = f (t, y) are satisfied. Let
us putt0 = 0, y0 = (x0, 0) (soλ0 = 0), tk = 0, yk = (x0, λk), whereλk−→

k→∞0. One
hasb(t0, y0)> T + ε,a(t0, y0)< 0 according to Lemma 2. We can putc= 0, d= T
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and from the statement of Lemma 4, we immediately obtain the main result of this
section:

Theorem 3. Let x(t) be the solution of (1), x(0)= x0, t ∈ 〈0, T + ε〉, where
T > 0, ε > 0. Let xλ(t) be the solution of (2) for a given value ofλ, xλ(0)= x0.
Letλk → 0 if k →∞. Then there exists k0 such that for each k> k0, the solution
xλk (t) is defined on〈0, T〉 and the sequence xλk (t) uniformly converges to x(t) on
〈0, T〉 for k→∞.

Remark.This is actually the main result because Eq. (1) is the Hamilton
equation for the classical limit and Eq. (2) is the Hamilton equation of the classical
projection if there is given a polynomial Hamiltonian. So the time evolution of the
classical projection was shown to converge to the time evolution of the classical
limit in some sense forλ→ 0. The shown convergence is weaker than the uniform
convergence on compact intervals in time, but it is clearly stronger than the simple
pointwise convergence. The question remians open of whether one can also prove
the uniform convergence on compact intervals in time.

ACKNOWLEDGMENTS

The author would like to thank Pavel B´ona, Hana Lichardov´a, and Boris
Rudolf for helpful discussions. This work was supported by Slovak Grant Agency
VEGA project 1/7069/20.

REFERENCES

Berezin, F. A. and Shubin, M. A. (1983).The Schroedinger Equation, (Izdatelstvo Moskovskogo
Universiteta, Moscow [in Russian].
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